

Via Acquanera, 29 tel. 031.526.566 (r.a.) info@calpower.it

22100 COMO fax 031.507.984 www.calpower.it

HEINZINGER ERS BIC

High Dynamic Test Bench Energy Systems up to 1200kW for low and high voltage applications

ERS BIC

The new Generation of Test Bench **Energy Systems**

Technical Benefits

- - (2x 600V, 600A)

 - Serial mode (1200V, 600A)

Today, our ERS BIC is a core component of test benches used in research and development, quality assurance and EOL testing. Due to its dynamic characteristics and capabilities it can be utilised in a wide variety of feed and simulation tasks.

One possible application is the simulation of a battery: During the motion control profile test for a hybrid or EV drive train, the test bench energy system takes the role of the vehicle battery. In a pure battery test, possible tasks range from characterization to long-term service life testing and from start-up protection to EOL testing.

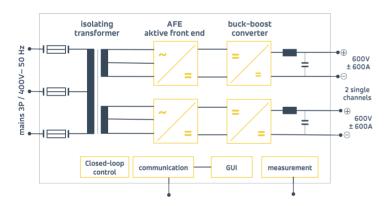
With the new generations of Test Bench Energy Systems, Heinzinger is able to supply the whole spectrum of requirements for automotive test applications. With FPGA technology and an innovative switching operation mode ERS BIC already supplies maximum current and full dynamic even in the low voltage range and for high power ERS up to 1200V / 2400A and 1.2 MW are already available and satisfy the users with the known precision and dynamic of Heinzinger products.

*) High current version with up to 2400A and 4 channels available

Energy-Balancing

Multichannel

HEINZINGER ERS BIC


High Dynamic Test Bench Energy Systems up to 1200kW for low and high voltage applications

Output	
device power	±160 600kW
output voltage	1200V
output current	±2400A
	Potential separated to mains
output reference	by insolation
	transformer

	cransi omici
Accuracy dynamics	
voltage accuracy	≤0.05 % FS
voltage rise time (10 % - 90 %)	< 1ms [resistive load]
setting resolution	0.1V
residual ripple	≤0.2 % Unom (f=0-1MHz)
current accuracy	≤0.1 % FS
current rise time (10 % - 90 %)	<1ms [resistive load]
setting resolution	0.1A

Block diagram and operation range ERS BIC

≤0.4 % Inom (f=0-1MHz)

Options

residual ripple

• Insulation monitoring

Continuous two stage insulation and earth fault monitoring (switchable)

DC-output relays

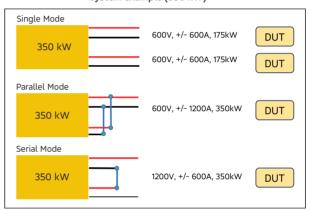
to enable a galvanic disconnection of the load at no load switching condition

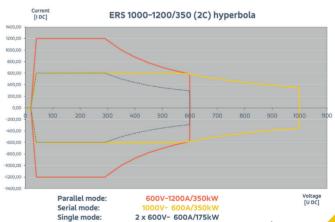
- Battery test bundle
 - Zero current activation
 - Active discharge by energy recovery to the mains
 - Dynamic control mode change enables automatic
 - selection of operation modes CC, CV or CP, depending on the set values and load requirements
 - different regulation parameters storable
- Second-level battery simulation through various RC-networks

Main connection

AC input voltage	3x380 480V~ 3P/N/PE
AC input frequency	47 63Hz
power factor	≥0.98

Ambient conditions


operating temp.	5 40°C
humidity	15 75 % (non condensing)
cooling	water cooled system


Standards

protection class	IP 20 EN 60529
EM emissions	EN 61000-6-4
	EN 61000-6-2
safety	EN 61010

Version 02/2020 subject to technical modifications

System example (350 kW)

Heinzinger electronic GmbH

Anton-Jakob-Str. 4 83026 Rosenheim Germany

Phone: +49 8031 2458 0 Fax: +49 08031 2458 58 Email: info@heinzinger.de Web: www.heinzinger.com

Via Acquanera, 29 tel. 031.526.566 (r.a.) info@calpower.it

22100 COM0 fax 031.507.984 www.calpower.it

